Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
BMC Cardiovasc Disord ; 23(1): 78, 2023 02 10.
Article in English | MEDLINE | ID: covidwho-2238645

ABSTRACT

BACKGROUND: Myocardial injury after non-cardiac surgery (MINS) is a frequent complication caused by cardiac and non-cardiac pathophysiological mechanisms, but often it is subclinical. MINS is associated with increased morbidity and mortality, justifying the need to its diagnose and the investigation of their causes for its potential prevention. METHODS: Prospective, observational, pilot study, aiming to detect MINS, its relationship with silent coronary artery disease and its effect on future adverse outcomes in patients undergoing major non-cardiac surgery and without postoperative signs or symptoms of myocardial ischemia. MINS was defined by a high-sensitive cardiac troponin T (hs-cTnT) concentration > 14 ng/L at 48-72 h after surgery and exceeding by 50% the preoperative value; controls were the operated patients without MINS. Within 1-month after discharge, cardiac computed tomography angiography (CCTA) and magnetic resonance imaging (MRI) studies were performed in MINS and control subjects. Significant coronary artery disease (CAD) was defined by a CAD-RADS category ≥ 3. The primary outcomes were prevalence of CAD among MINS and controls and incidence of major cardiovascular events (MACE) at 1-year after surgery. Secondary outcomes were the incidence of individual MACE components and mortality. RESULTS: We included 52 MINS and 12 controls. The small number of included patients could be attributed to the study design complexity and the dates of later follow-ups (amid COVID-19 waves). Significant CAD by CCTA was equally found in 20 MINS and controls (30% vs 33%, respectively). Ischemic patterns (n = 5) and ischemic segments (n = 2) depicted by cardiac MRI were only observed in patients with MINS. One-year MACE were also only observed in MINS patients (15.4%). CONCLUSION: This study with advanced imaging methods found a similar CAD frequency in MINS and control patients, but that cardiac ischemic findings by MRI and worse prognosis were only observed in MINS patients. Our results, obtained in a pilot study, suggest the need of further, extended studies that screened systematically MINS and evaluated its relationship with cardiac ischemia and poor outcomes. Trial registration Clinicaltrials.gov identifier: NCT03438448 (19/02/2018).


Subject(s)
COVID-19 , Coronary Artery Disease , Heart Injuries , Myocardial Ischemia , Humans , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/surgery , Coronary Artery Disease/complications , Pilot Projects , Prospective Studies , COVID-19/complications , Myocardial Ischemia/diagnosis , Postoperative Complications/diagnostic imaging , Postoperative Complications/etiology , Risk Factors
2.
Drugs ; 82(9): 949-955, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1885512

ABSTRACT

The management of hyperglycemia in patients admitted to hospital is mainly based on insulin therapy. However, the positive and rapid effects of sodium-glucose cotransporter 2 inhibitors (SGLT2i) on cardiorenal outcomes raises the possibility that they might confer benefits to hospitalized patients. In recent, well designed, randomized trials (SOLOIST-WHF and EMPULSE) recruiting inpatients with heart failure (HF), SGLT2i demonstrated the potential to improve survival and quality of life and reduce the number of HF events, time to first HF event, hospitalizations, and urgent visits for HF compared with placebo. They were also well tolerated, whereas incidence of diabetic ketoacidosis was low. In EMBODY, empagliflozin was shown to be protective against the deleterious effects of cardiac injury in patients with acute myocardial infarction. In DARE-19, the administration of dapagliflozin to inpatients with cardiometabolic risk factors and COVID-19 was based on the hypothesis that the anti-inflammatory properties of SGLT2i could alleviate organ damage. Although the findings did not reach statistical significance, the efficacy and safety profiles of the drug were encouraging. These promising findings in the field of cardiometabolic medicine set the stage for future research to explore whether the benefits of gliflozins can expand to inpatients with non-cardiometabolic disorders, including sepsis, cirrhotic ascites, and malignancies. The concept of inpatient use of SGLT2i has evolved greatly over the past few years. The latest evidence suggests that SGLT2i may be effective and safe in the hospital setting, provided patients are carefully selected and closely monitored. Real-world data will prove whether present hope about inpatient use of gliflozins will transform into future confidence.


Subject(s)
Heart Failure , Sodium-Glucose Transporter 2 Inhibitors , COVID-19 , Heart Failure/drug therapy , Humans , Quality of Life , Sodium-Glucose Transporter 2 Inhibitors/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL